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PREFACE

The major results of this dissertation are theorems to the ef-
fect that certain classes of relational structures are not axiomatizable
by universal sentences. Some of the particular classes considered are
theories of measurement in the sense of the Scott-Suppes definition; 3
others are theories of measurement according to a natural generalization
of this definition. Part of the significance of the results is that

they are closely related to problems of proving representation theorems

[RY

in measurement theory. Ideally, one would like to have a finite list of

gy el e,

universal axioms which are both necessary and sufficient for guarantee-

ing the particular representation in which one is interested. The re-

sults of this thesis show that in many cases we are forced to settle for

SRD VNN 00 0 A S ey e <k W S

more modest achievements,

What follows under the four headings below are some intuitive

statements of results whose precise formulations appear in the thesis.

(1) On Additive Conjoint Measurement

Given a relation (xl, cees xn)‘z (yl, cees yn) , one cannot
find a finite list of universal axioms which are both necessary and
sufficient to guarantee a representation by real-valued functions,

mi, i=l, ..., n, such that, for all appropriate Xps eees X s Yis eees Yn?

e
e
e




n n
(xps oo XD 24yys cen )= T 0, (x) 2 T 9, 0))
i= i=1
(2) On a First-Order Segment of Decision Theory
Let C be a set of consequences, and let S = {sl, coed Sn}
be a finite list of states, Let acts be viewed as n-tuples of elements
from C . Then, on a preference relation, R , between acts, there can
be no finite universal axiomatization which is both necessary and suf-
ficient for the existence of a probability function p on § and a
utility function u on C such that, for all Cys +ees Cos

n

| ]
ci, cees © e C,

n

n
(egs vees € )R]y coey eh) = T u(e)) p(sp) 2 T ule}) plsy)
i=1 i=1

(3) On Difference Systems of Measurement
Let D be a four-place relation on a set A, Let I be the

binary relation ' (abDba A baDab) , Let T be the axiom
(da,b,ced) [ T (aIb) Al(alc) A1 (bIc) -
(da,b,c,deA) [ 1 (aIb) A 1(alc) A abDcd A cdDabl .
Then T 1is a necessary axiom for measurement on an interval scale.
Moreover, no finite list of universal axioms may be added to T in

order to obtain necessary and sufficient conditions for measurement

on an interval scale,

iv
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(4) On Multidimensional Scaling

Let D be a four-place relation on a set A, Let p be a
metric in Euclidean n-space., In multidimensional scaling one is in-
terested in representations by vector-valued functions f such that,

for all a, b, c, deA ,

abDed «— p(£f(a), £(b)) < p(£(c), £(d)) .

For both the "dominance" metric and the ordinary Euclidean metric there

can be no finite universal axiomatization which is necessary and suf-

ficient for the above representation,
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CHAPTER 1

PRELIMINARIES

1, Notation and Basic Concepts

Let's begin to immerse ourselves in the needed notions of logic,

set theory and model theory by coming to terms with notation. Here is

o ¢ .33 &

a brief beginning list:

S i T § A Ao e

"if £ for 'if, and only if'
?{3 'st! for 'such that'
f 'Dom(f)"' for 'the domain of the function f"-
"Rng (£)' for 'the range of the fimnction £’
: 'Al' for 'Al
| B bl for  'A x A™
) ' 'R@)' for 'the power set of A'
e A & for 'the set of real numbers'
r? 'R,," for 'the relation R, restricted to the
1A '
- set A
:} " (x,y)' for 'the interval {teR /x < t <y}'
"{x,y)' for 'the ordered pair {{x}, {x,y1}"
{] '<x1’ ceed xn>' for '<x1’ <x2’ sos xn>>'
: "Mi, 1 <i<n' for 'the projection functions from
[} RD into R given by
ni(<x1’ see xn>) = xi'

C I . - e e o st x| e o N - -
= AP ——




We shall be dealing with relational structures of the form
m = {a, Ris vees Rk>’ where A is a non-empty set and Ris ooos Ry
are relations on A of orders Mys eues mk » respectively, The set A
is the domain of the relational 'structure M , .4nd the seqnuence
<m1, cees mk) is the type of M ., We shall let 'S(N)' denote the
domain of M; '|M|' will refer to the cardinality of the domain of the
relational structure M, If o is a sentence of first-order logic,
then '¢"tr M'* will indicate that ¢ 1is true in the struct.ure m.
The’ homomorphisms in Tarski. [15] are not the same as those in Scott-

Suppes [9]. We shall deal with homomorphisms in the sense of the latter

paper,

Definition

'Let'?m~‘-=~(‘A, Rl’ ceod Rk) and h = (B, Sl’ cees Sk> be two
relational structures of type (ml, coes mk) . Then a function f is

a homomorphism from M ontc N iff

(i) Dom(f) = A, Rng(f) =B , and
m,
(ii) - For all ief{l, ..., k} and all (%15 oves X ) €A t,
i

(xl, ceos xmi) e:R‘i iff' \f(xl), coes f(xmi)> e:Si .
If also,
(iii) f is 1 -1,

then f is an isomcrphism between M and h .
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If K 1is a class of relational structures, all of which are of
'a fixed type, then we shall follow Tarski [15] and let I(K) be the
class of all isomorphic images of members of K . We shall let H(K)
be the class of all structures [N for which there exists a structure
NeK and a homomorphism h from N to M, Similarly, H-l(K) will
be the class of all structures I £or which there exists a structure
Wek and a homomorphism h from M to h . Fihally, 'S(K)' will
deriote the class of all substructures of members of K , Where K is
2 unit.class  {M} , we shall write 'I(N)' instead of '1({m})' , ete.

The structure M is embeddable in N iff msH.]‘S(h) .

‘Now we are ready to start dealing with theories of measurement,

Definitions (Scott-Suppes)

A relational structure N is a numerical relational structure

iff ®(h) =R . Let K be a class of relational structures of type

(ml, cees mk) . Then K 1is a theory of measurement iff I(K) €K

and there exists a numerical relational structure N st KC Hm1 s(h) .

Note that if N is a numerical relational structure and K = H-l sih) ,

then K is a theory of measurement which is closed under substructures,

That is, I(K) €K and S(K) CSK.

‘ Now that we have so many definitions at hand, perhaps the reader

would like to see a proof of something., In Scott-Suppes (9], p. 116,

there is the remark that "the class of all countable relational systems




1
5
2
X
3

of .a given type is a theory of measurement; however, the numerical

relational system required is so .bizarre as to be of no practical value."

As a little exercise in set-theoretical methods of proof, let's consider

an impractical generalization of the above statement,.

.Remark

... Let wd be a cardinal number, Let K be a class of relational
structures of type. (ml, wee mk~) st , for every MeK, |m| < woz . Then

there is a relational structure N such that |h| <2  and K cis(h).

Proof: We may assume MeK ~ 8("1)}_‘-_ w.a . By this assumption K

*
is a set and, hence, can be indexed by an ordinal « of cardinality
w
%
<2 ¢ . Thus, let K = {myl'yea } . Introduce distinct elements az

for '.yeoz*- TEW Define R as follows, where M = (A, R' Ty
U0 e Ry ? Y v’ 12 e B/t

) *
Rh =- {(a'jY. 9 oo a'iY )/<il, eeed imh> gR]': and Yea } "
. "
.’ - ’ * - - —
Let A = {aZlyeoz s 'réwa}' , N = (A, Rli’ cees Rk> . We shall now show
that K<S IS() . Pick any mYeK . Let A* = {a'gl éeAY} ’

Y

* L . -
) . Then the map § - ag is an isomorphism

o= (AR 4 eees By

1A tA*
between m'Y and N* . Hence, mYeIS(h).

qed.

2. MAxiomatizability of Theories of Measurement

Let K be a class of relational structures all of the same type.
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Let ¥ be a set of sentences in first-order logic.

Definition. (Tarski)

KeAC [45 is axiomatizable (in the extended sense)] iff there

A

is a set ¥ of sentences such that for all models M (of the appro-

priate type)

MeK— & tr M

To indicate that K 1is finitely axiomatizable, or, in other
words, that there is a unit set 2 as in the above definition, we shall

write 'KeAC' . The notion of universal axiomatizability (in the ex-

tended sense), denoted by 'KeUC,' , is obtained from the above defini-

A

tion by stipulating that ¥ be a set of universal sentences, Finally,
KeUC is definable in the obvious way. Tarski [15] has elegant criteria
characterizing classes in UCA . In [16], Vaught develops a beautiful
characterization of classes in UC .

Since we shall almost always be dealing with measurement-
theoretic classes whose members are finite relaticnal structures, we
need to use a slightly modified version of the apparatus set up by

Tarski and Vaught, The following well-known result shows why.

Theorem 1
Let K be a class of finite relational structures of a fixed,

finite type. Then the following are equivalent:

WX DL RIE ¥

O R R
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(1)  (dkew) [MeK - [M| < k] A I(K) SK

(ii) KeAC

(iii) KeA.CA

So long as the cardinalities of the models in our theory of
measurement X are unbounded, we know that K{:ACA . Therefore, what

we consider is axiomatizability in the following sense:

Definition

Let wa be a cardinal number. A class K of similar relatiomal

structures is axiomatizable up to wa [KeAC(wOP] iff there is a sen-

tence © st , for all models M (of the appropriate type) for which
<
Im| <w,

o tr h«— MeK

We define KeUC(wh) by stiﬁulating that ¢ be a universal sentence.
Scott and Suppes mention in [9] that Vaught's characterization of

classes in UC also works mutatis mutandis to provide a characteriza-

tion of classes in UCG»O) . In the following theorem to this effect
we write 'Sn(mb' to indicate the class of all relational structures
N in S(@N) such that |h| <n . We also write 'K(wa)' to stand for

'the class of all models MeK st |M| <w '.




Theorem 2 (Vaught-Scott-Suppes)
Let K be a class of similar relational structures of finite

order. Then KeUC(wo) iff

i) SEw) SK
(ii) IR@)) SK and
(iii) dnew st for all M st |m| < W, »

if Sn+1(m) C K, then MK .

For the most part, we shall be interested in taking a fixed
numerical relational structure N and then considering the class K

1S(h) . Then we sghall use

of all finite relational structures in H
Theorem 2 to show K#Uc(wo) . The reader can easily satisfy himself
that, for each such result we obtain, there is the corresponding result
that H.ls(h)iUC . Since we shall be interested mainly in classes K
such that K - |m|'< wo , it will be convenient for us to use the

phrases 'K is axiomatizable' and 'K is universally axiomatizable' to

mean KsAC(wO) and KeUC(wO) , respectively.

3. Intuitive Comments

As Stevens says, "Measurement is possible only because there is
a kind of isomorphism between (1) the empirical relations among proper-
ties of objects and events and (2) the properties of the formal game in
which numerals are the pawns and operators the moves." ([10], pp. 20-

21.) The formal definition of a theory of measurement given by Scott




and Suppes is an attempt to render mathematically precise comments such
as Stevens', If KC H-]'S (n) is a theory of measurement, then the mem-
bers of K reflect part (1) of Stevens' statement and the numerical
relational structure N reflects part (2).

A much disputed subject has been that of the measurement of
subjective entities. Insofar as the extreme viewpoint that there can be
no meaningful measurement of perceptions is concerned we have very con-
vincing refutatioms available right at our fingertips tﬁanks to psycho-
physical results such as those dealing with cross-modality matching
(see Stevens f11]). One can, for example, under suitable laboratory
conditions, make measurements of and reasonably accurate predictions
about subjects' perceptions of the strengths of different vibrations
applied to their fingertips.

In [13] Suppes and Zinnes attempt to provide theoretical criteria
for the existence of measurement in general -- be it objective or sub-
jective, So that we may have something specific to talk about in dis-
cussing some of the intuitive aspects of their formal approach, let us
consider the four-place relation A on the real numbers given by
xyhzw iff x-y <z-w . Let N be the numerical relational structure
(R, A) . The intuitive idea of a bomomorphism h from an empirical
relational structure (A, R) , RC A4 into S(M) is that h provides
a means of assigning numbers to the entities that are described in the
structure . (A, R) . A paradigm that one might keep in mind is the case

where A is a set of tones and the relation R 1is viewed as holding

— - . [ - e e et it = B~ o e an o — = e




for a quadruple {a, b, c, d) of tones in A iff a particular indi-

vidual has judged the difference in loudness between tones a and b to

be not greater than the difference in loudness between tones c¢ and d .
A representation theorem (see [13], pp. 4-8) for a theory of

1 . . .
S(h) is a result to the effect that certain axioms

measurement K C H
suffice to guarantee the membership of a relational structure in K .

In our paradigm the intuitive idea behind such axioms is that if they

are satisfied by an individual making judgments about tones, then we
have a means of quantifying his perceptions, Thus, part of the Suppes-
Zinnes criteria for meaningful measurement is that there be a representa-
tion theorem with axioms holding in empirical structures determined by
experimental data. What is really desirable is the situation where an
empirical structure satisfies axioms which are strong encugh to guarantee
one of several kinds of uniqueness results, Then the Suppes~Zinnes
theory asserts that measurement has been achieved by means of a particu-
lar kind of scale (cf. Stevens [10l, p. 25 and Suppes~Zinnes [13], pp.
8-15).

With respect to the particular case of the relation x-y < z-w
and the numerical relational structure N , nobody has, as yet, succeeded
in finding a finite axiomatization that is necessary and sufficient for
guaranteeing membership of finitary structures (A, B) , R c A4 in
Hfls(h) . Sufficient but not necessary axioms appear in Suppes-Zinnes

[13]. For an infinite necessary and sufficient universal axiomatization

see Scott [8]. The question as to whether or not one can find a finite

L T et s ot 5 b ox e, O




necessary and sufficient universal axiomatization has been answered
negatively by Scott and Suppes [9]. 1In the next chapter we shall con-
sider a proof of their theorem, Then we shall proceed to look at simi-

lar results for more general measurement-theoretic classes,

«. 10 -
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CHAPTER II
ESSENTIALLY ONE-DIMENSIONAL RESULTS

1. The Numerical Relation for Difference Systems of Measurement

We now turn to [9], where Scott and Suppes indicate a proof of

the following result:

Theorem 3

Let A be the four-place relation on R given by xyldzw iff
x-y £ z-w . Let K be the class of all relational structures
h = (X, D) , where DC_:X4 , |l’n| < Wy » and men‘ls«n, A)) . Then K

is not axiomatizable by a universal sentence.

Our goal now is to establish the above theoren by using a lemma that

will come in handy later,

Terminology:

Let m be an odd number, Let positive numbers Pl’ cees Pm

be given, Then the a's generated by the T's are the 2m numbers

determined as follows: a, =1, For 1<j<m+1, a, =a, , +P, .
1 - j j-1 j-1

If m+2<j<2m and j 1is odd, then a-j = a5 + P(j-1)/2 . 1If

m+2<j<2m and j 1is even, then aj = aj._1 + P(j-m-1)/2 , Figure 1

pictures the a's generated by the P's ,

- 11 -
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Given any model M = (A, D), D__C_'_ZA4 and any a3 oees a{‘eA >

al, cesd a{”

4 < !AI , let us write 'In .. to refer to the submodel

(A - {al, cees aL} R DTA . {al, .aL}> of M., We shall establish
Theorem 3 by showing that K fails to satisfy the third condition of
Theorem 2. To do this we need to show that, for all new , there exists
a model MK such that Im| < w, . and Sn(m) C K . What we shall show
is that, for .all odd. mew , m > 3 , there exists a model m$K_§t lhl = 2m
and, for all aed(M) , m2eK . One can convince himself with a minor
amount of effort that the above suffices to show K is not universally
axiomatizable, The construction of the model M, given m , will de-

pend upon selecting "nice" distances P., ..., Pm and then using the

1’
a's generated by the P's .as the elements of ®(W) . For the rest of

the proof of Theorem 3, m. will be a fixed odd integer 2> 3.

1’ ee o9 Pm

such that each Pi is a power of two and is larger than twice the sum

In the following lemma, we shall be using distarnces P

of all the earlier Pi's . Because of the uniqueness property of binary
expansions these conditions enable us to impose a strong limitation upon
the number of equal-length relationships among intervals of the form
(ak, aL), whete’ ay and a, belong to the set of a's- generated by

the 'P's . An interval such as (ak, ab) will be referred to as an

atomic interval iff ay - 8 = Pi s for some i, 1 <i<m,.
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Lemma 1

Let Pl’ ces Pm be powers of 2 such that if 1 <i<m-1

_ 5] j+2 -
and Pi = 2~ , then Pi+_.2'2 . Let A = {al, ooes aZm} be the set

1

of a's generated by the P's . Let x, y, 2z, weA such that x>y,

zZ>w, 2> X, and x-y = z-y . Then either

(i) (y, x) and (w, z) are atomic intervals or
(ii) (y, w) and (x, z) are atomic intervals or ]
(iii (y, x) = (al, am> and <W,_g> =2(am+1; a2m> or

(iv) (v, x) = (ap, am+1> and (w, z) = (a_, aZm) .

Proof

Let = {(t, u)/t, uves, t <u < am}

<t <u} ;

g
R = {(t’ U)/t, u€l, am+1
s

= {(t9 u)/t’ ueh, t _<_ am’ am 511} .

+1
Then, for all t, ueAstt<u, (t, u) e LURU S, Because z >x
and if (t, u)eS, (t', u')eLUR , then u-t > u'-t' , we need only con-

sider the following cases:

(1) (y>x), (w,z) €& or (y,x), (w,z) eR .
(2) (Y’x) el ’ (W,Z) e .
(3) (y’x)’ (w,2) €S .

We show first that case (1) is contradictory. It is clear from
Figure 1 that no Pi can appear more than twice between any two points
a,s ajeA . And, because x-y and 2z-w have identical binary expansions,

we know that between x and y and between z and w there must be

- 14 -
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the same powers Pi occurring the same number of times. Hence, from
case (1) we may conclude that (x, y) = {z, w) , and this contradicts

the assumption x <z ,

Case (2)

let 4 be fhe least integer such that P& .appears between x
and y in Figure 1, ‘Lep g be the greatest integer such that Pg
appears bétween x and y in Figﬁre 1, If L =g , then (y, x) and
(w, z) are atomic intervals; qed. Hence, we may assume 4 < g , Then

P, and P must appear between x and y . Hence PL and PL+

A 141 1
must appear between z and w . If 1<4< r_n%_ , then P Eﬂzi'.*-—l

‘ . ' m+1
occurs between PL and P‘{‘+1 in (w, z). If > <4 <wl, then
P&-(Eél) occurs between PL and PL+1 in (W?n?),; but this is a con-

tradiction, given the definition of 4 . Hence,

m+24+1 > m+3 S m+1 >4 . This means

g2 2 2

- 2

Pm +3- and Pm+1 occur in

2 2

(w, z). Therefore, P1 occurs in (w, z) and 4 =1, Similarly,

g=m- 1. Therefore, (y, x) = (al, am) and (w, z)=(aim+1, azm) .
qed.
Case (3)
<
y<a,a Sxw<a,a <z, Also

z-w=x-y<z-y, Hence y<w . Thus (y, wed, (x, z)eR and
W-y=2z-%x,., So, as in case (2), either (y, w), (x, z) are atomic
and we are done with the proof or else (y, w) = (al, am) and

(x, z)=(a_,,; a, ). Then (y, x) = (a;, a0 and {w, z) ={a , a, ).

2m
qed.

- 15 -




!EW‘&&

We now proceed with the construction of the model M ., Figure 2
shows why, for m =5 , M fails to be a member of K . Any homomorphism
from M onto a subsystem of (R, A) must preserve the distances
Pl’ P2, P3, P4 between a and b and also the distances
P3, Pl’ P4, P2 between ¢ and d . Therefore, in order that M
belong to K , the distance from a to b in M must equal the dis-
tance from ¢ to d in M ., By constructing M so that (a,b) is
shorter than (c,d) , we ensure that HQK .

Let A be as in Lemma 1, Let a = a;s b = a., c = a 4’

d =a Let B, = {(x,y,z,w) eAé/x -y<z- w} . Let

2m ° 0

z - w and (x,y,z,w) is not a permutation

B1 = {(x,y,z,w) eAé/x -y

of <a,b,C,d>} . Let B {<b’a’dyc>’ <b’d,ayc>’ <C,d,a,b>, (C’a’d’b>} .

2
Let D = B, U By U B, and take M = {A,D) .

Claim: 4K

Proof by contradiction. Suppose there is a homomorphism
£:A - R st , for all x,y,z,weA , {x,y,z,w) €D iff

£(x) - £@y) < f(2) - f(w) . Then

£(ap) - £(ap) = £lay,s) - £lag,y)
f(a3) - f(az) = f(am+5? - f(am+4)
f(a4) h.f(aB) - f(am+'7) - f(am+6)
f(am) - f(am-l)':f(aZm—l) - f(aZm-Z) ’

Hence, f(am) f(al) = f(azm) - f(am+1) . Therefore, <{d,c,b,a) €D .

% Contradiction, qed.
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a,
Claim: For all aieA , m tek .

Proof: Pick ¢ > 0 such that

2¢<min {(z - W) - (x - y)/{x,y,2,w) B}

" We shall define a homomorphism

f: A - {ai} - R according to which of the three following

cases holds:
(i) ie {1, m, m+l, 2m} .

Then, for all x,y,z,w €A - {ai} s <x,y,z,w) eEDe— x-y<z-w,
a,
Hence the identity function f embeds M © .

qed.

(ii) 1<i<m, Then define f by

Suppose X,y,z,w €A - {ai} , and (x,y,z,w) ¢éD . We shall show that

f£(x) - £(y) £ £(2)

f(x) - £(y) £ £(2)

f(w) . Note first that, if <x,y,z,w> eBo , then

f(w) , because

N
]

w < f(z) - [f(w) - €]

l
N
'

w-e¢<f() - f(w)
Hence, if (x,y,z,w) €B

O b

f(x) - f(y) <x+e-y<z-w-¢e<f£f()-£fWw.

- 18 -




Suppose now that (X,y,2z,w) ¢B, .

Then X - y =2z - w . We may assume that x - y >0, so x>y and
z>w . If z =x, then f(x) - £f(y) = £(z) - f(w) . Thus, we may
assume z > x . Then, by Lemma 1, we may conclude that

£(x) - £(y) = £(z) - £(w) , because, for any atomic interval (t,u) ,

where t, ué {ai} , f(t) - f(u) =t - u .

Finally, suppose that (x,y,z,w) €B To show that

2 L
f(x) - £(y) < £(2) - f(w) it suffices for us to verify that

£(b) - £(a) < £(d) - f(c) . By the definition of f ,
f(b) - f(a) =b - (a+e)<b-a=d-c-= f(@d) - £() .
Hence we have completed the proof that, for all x,y,z,w €A - {ai} ,
if {(x,y,z,w) €D , then f£f(x) - £(y) < f(2) - f(w) .

Now suppose that X,y,z,w €A - {ai} and f(x) - £(y) < £(2) - £(w).
We must show (x,y,z,w) eD . If z-w<zx-y, then, as above,
f(z) - f(w) < £(x) - £(y) , which is a contradiction. Hence,

X-y<z-w. If x-y<z-w, then (x,7,2z,w) €D ., qed.

Thus, we may suppose that x -y =2z - w , If (X,¥,2,w) 1is not a
permutation of ({a,b,c,d) , then <(x,y,z,w) €B; €D . ged. Hence, we
may assume that (x,y,z,w) is a permutation of (a,s,c,d) .

Since x -~ y=2 ~-w,

either (x,y,z,w) € {{b,d,a,c), {b,a,d,c), {c,d,a,b), {c,a,d,b)]}

or <X’Y’Z’W> € {(a’b’c’d>’ <ascsb’d>’ <d’b’csa>’ <d’c’b’a>} .

- 19 -
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The latter case is ruled out, since f£(a) - f(b) > f(c) - £(d). Hence

(x5y525W) €B, cD. qed

'(iii) m<i and i# {m + 1, 2m}

In this case we define £ by

a, ’ if j<i1i
f(aj) ={: J

8 +e, if j>i

Then, as was done above, one can verify that, for all x,y,z,w €A - {ai} R
(x,y,z,w) €D iff £(x) - £(y) < £(2) - £(w) .

Hence we have completed the proof of Theorem 3. Let us now turn to some

related results pertaining to measurement theory and decision theory.
We shall consider a well-known subclass of the structures of the

form 8 = (A,p) , where A is a non-void set and p: a2 o x .

Definition (Suppes-Zinnes [13], pp. 48-49)

8 = {A,p) is a B.T.L. (Bradley-Terry-Luce) system iff, for all

a,b,c €A ,
(i) 0 < Pab
(ii) Pab + Pba =1, and
(iii) _ab | 53.9. = .1.).2.2
’ Pb P P
a cb ca

- 20 -




Corollary 1

Let K be the class of structures <{A,D) such that A # 8,

|A| < W D EIAF , and there exists a B.T.L. system & = (A,p) such

0 ’
that, for all x,y,z,w €A,
xyDzw iff P < P

Xy — 2w

Then K is not axiomatizable by a universal sentence.

2. A Corollary about Additive Conjoint Measurement

In Chapter 6 of a forthcoming work by Krantz, Luce, Suppes, and

Tversky [2], tentatively titled Foundations of Measurement, structures

of the form <A1’ cees A, 2 ) are considered, where A., ..., A_are
n’ - 1 n

non-void sets and > is a binary relation on Alx .o xAn . A five

axiom representation theorem is given providing sufficient conditions

for the existence of real-valued functions mi on Ai , 1 =1, ..., 0,

such that
(1) For all Pis 94 eAi , n .
(pys +ves P) 2 (qys +ees q ) iff 121 ®,(p;) 2 1-251 o, (q,) .

Let us now look at the kind of first-order language we shall

need in order to deal with questions of axiomztizability concerning

structures of the form (Al, cees Ah’-z Y . We consider a language By
in which there are n unary relation symbols Ri’ i=1, ..., n, and

one (2n)-ary relation symbol S . Each Ri corresponds to the
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membership relation for the set Ai , and S corresponds to the rela-

tion 2 . We now shall use Theorem 3 to establish:

Corollary 2

Let X be the class of all finite models (A, Aps ooes A, B)
in & such that if Al’ cees An are non-void, then there exist repre-
senting functions (:pi:Ai - R as in (1). Then K is not axiomatizable

by a universal sentence.

Proof:

As before, given an odd m > 3 , we need only find a model
m=<(A, A, ..., A, B) such that |A] = 2m, 4K , but, for all aeA ,
m%eK . Let A be as in Lemma 1, Let D c AA be as in the proof of
Theorem 3., Let A, = A, =A, Ai = {al}, 3<i<n. Define the rela-

1”2
tion BC A" by

(PI, EXKE ) Pn, q19 R ) qn> eB iff <p19 qu q2$ p2> eD b

Now let M= (A, A cees A, B) .

1’

Claim: IM:K .

Suppose the contrary., Then there are functions p;, as in (1). Hence,
(2) For all Pys Pys 995 9y €A ,

(py» aps Gp» Py €D 1FE © (p)) +9y(py) 29 (qp) +0y(qy) .

- 22 -
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Pick any as ay €A .

Since- (ak, ay, 2 3 > eD ,

That is,

v, (a) - ©,(a)) 20,(2) - ©,@,)
Also, (a&, a, ays ak> eD . Hence

o (a)) +@,(a) 20, (a) +@,(ay)

Thus, cpz (ak) - cpz (aL) z cp]_ (ak) - CP]_ (a&)

Hence, 0, (a) - 9,(a)) =0,(a) - P, (a,)

In particular,

ch(ak) = cPl(ak) +c92(al) = cPl(al)
for all 1 <k <2m .

Therefore, by (2),

For all Pys Pys 995 9y €A
(pys 9q» 9p» Py) €D IEE @ () + O, (y) 20, (q)) +9,(qy) .

But then the function £ = - %, homomorphically embeds (A,D) in
(R,A), which is a contradiction, Hence, m¢K. qed.
Now, by establishing the following claim, we shall complete the proof

of Corollary 2,
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Claim: For all aeA , meK .
a
Since M leK , We may assume a % a; . We know that there is a function

f embedding (A - {a}, Dy . {a}> in (R,A) .

Let cp1=cp2=-f, cpiEO, all 3 <i<n.
Then, for all Py» 94 €A - {a} ,
n

n
ey 2 iil 9, (q;) .

<P1’ s e ) pn’ ql’ LI qn> GB iff 1=1

Hence, nPeK. qed.

A 8 Y TR P L

3. A Corollary Pertaining to Decision Theory

We shall now use Theorem 3 to prove a non-axiomatizability

result related to decision theory. Our framework will be a first-order

rendering of only a small portion of the theory developed in Savage {71.
Let us now consider the version of Savage's representation theorem which
is stated in Luce-Raiffa [3], pp. 300-304, A collection 6 of acts is
given; members of 6 are functions defined on a set 8 of states and
having values in a set C of consequences. Events are subsets E of

S . There is a binary relation > of preference between acts, Savage's
representation theorem provides powerful second-order axioms guarantee-
ing the existence of a probability function p defined on the events

and a utility function u defined on the consequences such that the

following holds:

(3) Let {El} 1<i<m and {E;l} 1< j<n be two partitions of S .

Let A, A' be acts such that A(s) = cy for all seEi and A'(s) = c3 ,
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for all seE3 . Then
m n
AS>A' iff T u(e,) p(E)) > B ulel) p(EY) .
- . i i% - i j
i=1 j=1
Suppose now that we conzider only a finite set of states
8§ = {Sl’ cees sn} . Each act may then be viewed as an n-tuple
<c1, cees cn) of consequences. We might wonder about the question of
findiag axioms on a binary relation > between acts such that functions

p and u exist satisfying (3). Then we would have:
(4) For all cl’ o009 Cn’ ci’ o0 09 C‘['l GC

n n
1 1} 2 1
<c1’ cee cn>‘2 <c1, cesd cn> iff .Z u(ci)p(si) > .Z u(ci)p(si) .
i=1 i=1
Ia proving that there is no first-order universal axiomatization giving
necessary and sufficient conditions for the existence of a probability
and a utility function satisfying (&), we losz no generality by dealing

o o o - n [
with the binary relation 2 om ¢® as a (2n)-ary relation on C.

Corollary 3

Let 8 = {Sl’ .eed Sn} be a fixed set of n states, Let K
be the class of all finite models (C,x) such that R.Eiczn and there

exist real-valued functions u on C and p on 8 such that

J WPRUNIUVI SIS S et o+ w0 % e A e e e

i




(i) P(Si)ZO, i=1, ..., n

, n
(ii) z p(si) =1, and
i=
(iii) For all Cqs eees Cps ci, cees cI'1 eC,

n n
1 1 * !
<c1’ coes €5 Cls aees cn) eR iff iE1U(ci)p(si) 2 ]E_lu(ci)p(si)

Then K is not axiomatizable by a universal sentence,

Proof:

Let A and D be as in the proof of Corollary 2. Let RC A2n

be given by:

<P1’ I ] Pn’ ql’ LGNS ] qn> eR iff <P1’ ql’ qz’ P2> eD .
Let M = (A,R) .
Claim: NK .

Suppose the contrary. Then there exist functions p and u

satisfying (i)-(fii). It follows that, for all Pys Pys 495 9y €A ,

py» 45 dy > pz) eD iff u(py) P(s;) +ulp,) p(s,)

> u(qy) plsy) + ulqy) plsy)

Let ®; ¢ A-R by cpi(a) = u(a) p(si) , 1=1, 2,

Then, for all P1» Pyr 995 9y €A ,
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Thus, exactly as was done in the proof of Corollary 2, we may reach a
contradiction,

Hence, 4K, qed.

Claim: For all ae€A , ndeK

Choose a homomorphism f from A - {a} ’ DfA - {a}) into (R, A .

Let u = ~-f , Define p: 8-1R by p(sl) = p(s2 =-% s p(sj) =0,

ijfno Then, for a11 Pl, LI ] pn’ q].’ ¢ ¢ 09 qn GA' {a} 9

(Pys sees P Gps eves q )R IEE {py» 9;5 9> P, > €D
iff £(p,) - £(q;) < £(q,) - £(p,)
iff u(p,) +ulp,) 2 u(q;) +ulq,)
n n
iff .2 u(pi)p(si)'z .2 U(qi)P(Si)
i=1 i=l

Hence, mPeK. ged.

Thus, we have completed the proof of Corollary 3.

4, A Simple Representation Theorem with Universal Axioms

In the previous section we showed that within a certain frame-
work for talking about a preference relation on acts one cannot find a
finite list of universal axioms which give necessary and sufficient

conditions that the ordering of acts be in accord with the principle

of maximizing expected utility. Other criteria that have been proposed
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are discussed and characterized in Milnor [5]. We now mention that
Wald's minimax criterion may be viewed in terms of a representation
theorem, The following result states that there is a universal sentence
which is a necessary and sufficient condition thét a preference relation
on acts be in accord with the Wald criterion., Note thaé, with respect
to the class K below, the number of states of nature is fixed, al-
though structures in K may have domains (sets of consequences) of
arbitrary finite or countably infinite cardinalities. We need the con-
dition that the number of states of nature be fixed in order to know
that the members of K are of the same type. This condition also means

that (i), (ii), and (iii) below are equivalent to a single universal

axiom,

Theorem 4

Let n be a fixed positive integer >2 ., Let K be the class
of all structures (A,‘f ) such that A is a non-empty denumerable set,

. . . n . .
< 1is a binary relation on A , and there exists a function u : A= R

such that, for all Cys oo c.’ Ci, ceed C;,GA ’

(egs vees e )< lels vovy cp) iff min {uep)s oves uke )} <

min {u(ci), cees u(c;)} .

Then K 1is axiomatizable (up to wl) by a universal sentemce, More-

over, for a given structure in K , the function u 1is unique up to a

monotone (non-decreasing) transformation.




A o AR N, Sttt b e e e, - - - - . - - e -
F
;

Proof: It is straightforward tc show that the following is a finite

universal axiomatization for K .

(i) < 1is transitive and connected

(ii) (al, cees al)‘f <b1’ cees bl)

IA

A Kaps ooos 3)) < (@), «oos a) < .o (@, ..., a)

N <b1, e ee s b1)<<b2, EER) bz)f “‘5<bn’ ee e bn)

= <a a an>_<_ <b1’ bz, 20 09 b >

1’ 722 7 n

(iii) Let O, T be permutations of {1, 2, ..., n}. Then

(as 3y cees @) S dbpy byy ey b )= g ys cos ag )

5 <bT(1), eee bT(n)) .

5. A Numerical Dissimilarity Relation Imposed by the

Absolute Value Metric

Some termiunological clarification may be in order with regard
to the above heading. The name ‘'similarity relation' is sometimes used

to denote relations that are retiexive and symmetric. For this reason

we have chosen tc use the phrase 'dissimilarity relation' in order to
refer to relations that are in some manner related to judgments about
similarities and dissimilarities between objects. We shall now consider
the dissimilarity relation Ix - yl.f lz - wl on the real numbers., Our

goal is to prove,
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Theorem 5

Let A be the four-place relation on R given by xyldzw
iff |x - yl < lz - Wl. Let K be the class of all models M = (A,D)
such that |m| < W, » DS At , and M is homomorphic to a substructure

of (R,A) . Then K is not axiomatizable by a universal sentence.

Proof: As before, let m >3 be an odd integer, Let A,a,b,c,d be
as in the proof of Theorem 3. We shall construct a model M = (A,D)
such that nﬂ:K , but, for all =xeA , ek .

Let BO = {<X9Y9Z9W> eAé/lX = Y| < lz - Wl}

B, {{x,¥,2,w) eAa/lx - yI = lz - wl and (x,y,z,w) is not
a permutation of <{a,b,c,d)]}

= {<a9b9cyd>9 (a,b,d,c), <b9a9cyd>9 <b9a9d9c>9

BZ =
<a9c9b9d>9 <a9cyd9b>9 <C9a9b9d>9 <C9a9d9b>} .
Let D=B,UB UB, . Take m = {A,D) .

Claim: N:K .

Suppose f embeds M in (R,A). We first show by induction that f
must be strictly monotone on {al, cees azm}. Since (al, 3,5 ays al) {:D s
we know f(al) % f(a,) . Suppose f(al) < f(az), k >3, and

f(ai) < f(ai+1) , for 1 <i<k-2 ., We shall show that

f(ak_l) < f(ak) . Suppose not. Then
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f(al) < f(ak)== 0 < f(ak) - f(al)‘f f(ak-l) - f(al)
= |£(a) - £Gap| < [£(a_p) - £(ap)]
= <ak’ al, ak"l’ a1> eD
% Contradiction
Also,
f(ak) < f(al)'= 0< f(al) - f(ak)‘f f(ak-l) - f(ak)
= aps @ agr ) P
* Contradiction
Hence, f(ak-l) < f(ak). qed.
Similar reasoning shows that if f(az) < f(al) , then
f(aZm) < f(azm_l) <...< f(az) < I\al). But, because f 1is strictly

monotone, one can show, as in the proof of Theorem 3, that we must have
£ ) - £@p| =[£Gy - £ )]

Therefore, {c,d,a,b) eD.
* Contradiction

Hence, H*K. qed.

a,
Claim: For all aieA , M ek .
Let ¢ >0 be such that

2¢ < min {|z - w] - |x - y|/{x,y,2,%) € BO}

Define f on A - {ai} exactly as was done ‘in the proof of Theorem 3,

Then f 1is strictly increasing; moreover, for all x,y,z,w cA - {ai} R
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a

B

(%,y,2,w) € By = [£() - £(0)] < |[£(2) - £(w)]

and (x,y,2,w) ¢ B, » |£() - £(n)]| = |£(2) - £(w)|

e  Finally, one can check that |f(a) - £(b)| < |£(c) - £(d)| and

2 E: If(a) - f(c)l < |f(b) - f(d)l . Therefore, for all x,y,z,w €A - {ai} ,

(%,¥,2,w) €D = |£(x) - £ ]| < |£(2) - £W) ] .

Now suppose that x,y,z,w €A - {ai} and If(x) - f(y)l.f |f(z) - f(w)l .

We need only show that <(x,y,z,w) eD ., If lz - wl < |x - yl , then
(z,w,X,y) € BO and, by the above, If(z) - f(w)| < |f(x) - f(y)l ,

which is a contradiction, Hence, |x - y“f Iz - wl . Suppose

i (X,¥52,W) ¢D . We shall obtain a contradiction. By our supposition

é ; Ix - y! = Iz - wl and (x,y,z,w) is a permutation of (a,b,c,d) . :]
Since (x,y,z,w) # B2 , we may conclude that (x,y,z,w) € {(b,d,a,c), 7
’ <b,d,C,a>, <d9bsasc>s <d9b9csa>s (c,d,a,b), <C9d9b9a>9 <dscsasb>s {—"

(d,c,b,a)} . From this it follows that lf(x) - f(y)| > If(z) - f(w)| .

_—

S * Contradiction

;. 2 qed.

[

This completes the proof of Theorem 5, For convenience in deriving the
5 3 higher dimensional results of Chapter III, we note the following conse- {J

quence of the above proof. 7]

Lemma 2

For all odd m > 3 , there exist 2m real numbers

0<a <a<ooo<a

1 9 9m and a four-place relation D on -

L
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X = {al, ceos aZm} st the model M = (X, D) is not in K , yet, for
all €>0, every 2m - 1 element submodel of M is homomorphic to

a substructure of (R, A) by a homomorphism £ such that, for each

aieﬂ(f) . f(ai) € [ai, a, +¢) .

6. A Corollary Pertaining to Utility Differences

Structures of the form (A, Q, R) , where A 1is a non-void set,

Qc A2 , and RC A4 are considered in Suppes-Winet [12], The set A

iy

BN B

has as its intended interpretation a set of alternatives; Q is inter-

preted as a preference relation on A and R as a relation holding

between alternatives Xx,y,z,W iff the difference in preference between E
x and y fails to exceed the difference in preference between 2z and
w . Suppes and Winet present an axiomatization sufficient for the
existence on A of a representing utility function u which is unique
up to a linear transformation. As is also the case in the von Neumann
and Morgenstern approach to utility, the axioms are stated outside the
framework of a first-order language. The following result rules out the
possibility of a finite universal axiomatization within a first-order

language,

Corollary 4

Let K be the class of structures (A, R, Q) such that A 1is

. . . 4 2 ] .
a non-void finite set, RS A , QC A and there exists a function

u:A - B st , for all x,y,z,w €A ,




(i) xQy iff  u(x) > u(y) and

(ii) xyRzw  iff |u(x) - u@)| < |u(z) - u@w)]| .

i : Then K is not universally axiomatizable,

‘ Proof:

3 Let A, D be as in the proof of Theorem 5. Let E c A2 be
; ? given by xEy iff x>y . Let mM=<(A, D, E) . Then méK ; but,
, for all aeA , MeK . qed.
7. An Eight-Place Dissimilarity Relation

The intuitive background behind the next theorem is a special

kind of conjoint measurement situation. We may imagine that a subject

is considering various objects, each of which is split into two parts,

and that he is making dissimilarity judgments on the basis of how much
there is of some specific quality within each of the two parts of the

objects under consideration.

Theorem 6

Let @ be the eight-place relation on the real numbers given by

X ¥, X, Y, ()] Z) 2, Wy W, iff

VQXI - y1)2 + (x2 - y2)2 .S'¢4;1 - 22)2 + (’w1 - wz)2 .
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Let K be the class of models M = {A, D) such that
Im| < Wy » D §A8 and Me H ! SR, 0)) . Then K is not axiomatizable
by a universal sentence.

One can prove Theorem 6 by judiciously selecting powers of two

for Lemma 1 so that if o, X Bl, 82 are any distances between pairs

' ' 2 2 .2 2 _
of a's generated by the P's and ai + @, = Bl + 82 , then @ = Bl
or ai = 82 . Then one can proceed along the lines of the proof of

Theorem 5.
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CHAPTER III

GENERAL RESULTS IN n-DIMENSIONS

1, The Ordinary n-Dimensional Euclidean Metric

In this chapter we give up the idea of embeddings only into the

real numbers and turn to questions of embeddings in 2" . We shall be

: concerned with the dissimilarity relation An imposed by the Euclidean
3 metric in B , which we shall denote by '—— | or simply by '—' .,
: Definitions
: ; Let n be a positive integer.

: % D
Let X = <X1, e 00 xn>’ y = <y1’ o090 yn> en
: n
Then S s (%, - y.)2
> j=1 J J
: Let An be the four-place relation on R given by xyAnzw iff
i 1< D 1et K be the class of all models M = (X, D) , such
4 X,V ZsW n
; that lml <w, , D EIX4 , and I is homomorphic to a substructure of

<Rn’ An> o
We shall be after the result that none of the classes Kh’

1, 2, is axiomatizable by a universal sentence.

The enterprise of multidimensional scaling involves the hope
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that one can measure ''psychclegical distances" by using mathematical
distances. One would like to represent objects as points in R so
that experimental dissimilarities between the objects are reflected by
the distances between the points representing the objects. An embedding
in R" may be thought of as having the meaning that there are n
properties on the basis of which discriminations between the objects

are being made. As an example, let us suppose that M is an empirical
relational structure stemming from experimental dissimilarity data,
Suppose that h 1is a function which homomorphically embeds M in the
relational structure (Rn, An) . Then we may think of h as indicating
something to us about the relative importance of the n stimulus prop-
erties. An extreme situation would be.-the case where Hl(x) 1s constant
for all xeRng(h) ; here we would have grounds for concluding that the
first property of the stimuli had no influence upon the behavior of the
subjects in the experiment,

Now let's turn away from psychological intuitions and consider
some mathematical ones, viz., the geometric intuitions that lie behind
the proof of Theorem 7 below. We want to show that the classes Kn
fail to satisfy the third condition of Theorem 2. We shall build up
models M out of points such as 815 vuey By in Lemma 2, Our aim
will be to show that any homomorphism h from I into (Kn, An) must
be such that h(al), cees h(aZm) are collinear, because, given this,
we may then use our one-dimensional results to prove that m&Kn . In

order to build M so that the collinearity property holds, we shall
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adjoin n elements bl’ cees bn to the domain of the model for the
one-dimensional proof and then we shall appropriately extend the four-
place relation D to 'he new domain,

Figure 3 shows the ideas behind the models used in the proofs
for K, and Ky . Im the case of K2 we adjoin points b1 and b2

2

tO 8,5 003 @ and extend the relation D by stipulating that each

1? 2m
of the ai's be equidistant from b1 and b, . This condition
obviously forces the collinearity of h(al), cees h(aZm) , for any
homomorphism h ., Similarly, in the case of K3 , we arrange things

so that, in R? , h(al), cees h(aZm) must be on a line perpendicular
to the plane of the equilatera” triangle having vertices h(bl)’ h(bz),

h(b3) .

We now begin the proof of

Theorem 7

let n be a positive integer and let Kn be as defined at the
beginning of this chapter. Then K.n is not axiomatizable by a universal
sentence,

The first thing we shall consider is the proof of an
n-dimensional analogue to the theorem that the locus of points in a

plane that are equidistant from two distinct points is a straight line.

Lemma 3

Let qi, cees Q) be n distinct points in Rn such that
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- FIGURE 3

] ) The relations between the adjoined points bl’ coes bn

o R O

and the points ays eeus =P for n =2 and n =3
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q; qj = Qs 9> for i £j,k 4. Let x,y,z €k" such that, for

all i, j <n, qi,X = qjax’ qi’y = qj’y’ qi’z = qjaz . Then x, y, and

z are collinear.

3 . . .
Note that beyond R~ one needs to impose some conditions in

addition to q, # 1> ifj and q,x= q59%s 435Y = dj5Ys 452 = 4452
in order to force collinearity cf x, y, and z . To see this, take
q; = €3,0,0,0), g, =(2,0,0,/5), q; = (1,0,0,2/2), q, = {3/2,0,0,3//2),
x = (0,3,4,0), y = (0,5,0,0), z = {0,0,5,0) .

Now let (§&X;=1 be any sequence of elements in {—1,1} . Let
v be any positive real number. Define the pairs (mk, n&) of complex

numbers, for £ =1, 2, ... as follows:

(ml, nl) =0, v)

_ (W3
<m2’ n2> = ('—2—" %)

2 2 2
m& - n& + Zp&m&_l - m.‘k__1

a+1 2my

2 2
/ v (g - omp)

One can prove by induction that e and n, ~are real numbers.

a1

Define a%ekﬁ+l

’ f o, 1, 2, ... by a’o = <0>’ a]. = <m1’ §1r31> ’

a& = (0’ §&m&, g‘k-lnﬂ’ ey §2n3’ §1n2>

Given & , let (ri>?:i be the sequence of 4+l points in R&+1

defined by
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0, for j=1, ..., ®-itl

Hj(ri)

Hj(ri) = (o 1) , for j = k-i42, ..., A+l .

LTI CN

Lemma 4

Let veR, v >0 ., Let Qys eees Qpyg be points in i&+1 such

-

tlat q; qj =v, i # j . Then there exists a 1-1 function T on
R+l . . . . .
R into itself such that both T and its inverse preserve lines and

Euclidean distances and there exists a sequence <§i>i-1 R of
“dy eee

elements from {-1,1} having the property that, for Tis eees r

as above, T(‘i) =T, 1<ick< #+1 . Further, if Pc-:ll‘m-1 and

f+1

sl v

)
‘
‘!']
<

4

9

5

Lemma 5

B =Fory 12, s R, then () - Sz Mhasoqr 25 3 S A

The only trick involved here is to take T so that
Hj(T(qi)) =0, 1 <j<#&+-i . Then, by induction, one can verify that

there is a sequence {(E.) so that T(q,) =r,, 1 <i<#&+l . Since
i i i - -

T preserves lines, it is clear that Lemma 3 follows from Lemma 4,

For all n > 2 and, for all v >0, there is a real number

m, 0< ﬁ_f V£/3 , and there are points (, Qys eees 9 ¢R" such that

(i) Hl(q) =0, Hl(ql) =0, 1<1i 5 n

(ii) q3> 95 = Vs i#F]

(iii)  q,9; =¢,9; » 1 <12

) —2
(iv) 4,9, =V -m
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Lemmas 3, 4, and 5 provide us with sufficient machinery for

establishing

Lemma 6

Let n, m be positive integers such that m is odd. Then
. 4
there exists a model M= (B, E) , |B| =2m+n, ECB, N*Kh such
that there exists a submodel mo of M such that 2m < lmbl‘g 2m 4+ n ,

Mo

then hNekK .
n

¢Kn and if N 1is a submodel of mb such that |h| = lmol -1,

The proof of Theorem 7 follows immediately from Lemma 6.

Pick any n , m as above; let A = {al, ceey A } and D be

2m

i < <
as in Lemma 2., Choose bl’ cees bn so that a2m b1 <... bn .

Let B = AU {bl, cees bn} . Let L be a real number larger than a.

Apply Lemma 5 with v = 2L and obtain points (, Qs eees qneRn s

meR . Choose Yy >0 so that Yaon <m ., For each xeB , define

* n
x eR as follows:

*

For 1

IA

i <2m, let a, = (Yai, Hz(q), cees Hn(q)> .

* M

For 1 <i<n , let b, -gq

i i’

Let E = DlJ{(x,y,z,w) eB4 - Aa/ x*, y* < z¥%, w*} .
Let M = (B, E) . We shall now verify that M satisfies the conditions
in the statement of Lemma 6.

Claim 1: nﬁKn .

Suppose the contrary. Then there is a homomorphism f:B - " such that,
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for all x,y,z,w €B ,

(x,7,2,w) cE 1iff £(x), £(y) < £(z), £(w) .

For i =1, ..., n, let q:!L = f(bi) : and, for i =1, ..., 2m, let

1T - A
a; = f(ai) . Because (bi, bj, bk, bL) and (bk, bL, bi, bj) ¢E , if

i#j,k#ab,weknow q;_’qa:qlL’qui#j,k%'L.Also

q]!-, al'(=q3, al'c’ 1<i, j<nm, 1<k <2m . Hence, by Lemma 3,

f(al), cees f(azm) are collinear. Therefore, there exist points

(xl, cees xn) , (yl, cees yn) eR" , and numbers o ek , 1< i < 2m

n
z yi
t=1

and define g:A - R by g(ai) =0z . Then, for all a,» aj, a5 2y €A ,

such that f(ai) = (xl + WY eees Xy + Otiyn) . Let z =

(a;, 255 3y a&> e iff £(a,), f(aj) < i(a), £(ay)

MBS

. 2 2 _ o 2
iff Y, (ozi-ozj) < til Y, (ak'dl,)

t=1

iff  |g(a,) - g(aj)l < letay) - g(ay) |

Therefore g is a homomorphism from (A, D) into (R, Al).

Contradiction. Thus we have established Claim 1.

Lemma 7

There exists ¢ > 0 such that if £ is any map from A into
R for which f(ui) € [ai, a; +¢) and if f* is the map from B into
" oftained from £ by f*(bi) =4q; > 1<i<n,

f*(ai) = ('Yf(ai), Hz(q), cees Hn(q)) , 1 <i< 2m , then, for all
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<x’y’zaw> 334 - A4 ’

X%, y* < z%, wk iff £%(x), £*(y) < £%(z), £*(w)

Proof:

Take € < min ({|a, - aJ.I/i #3itU{L -a, D

Pick any (x,y,z,w) B4 - Aé . We shall indicate how one can

verify that

X%, y* < z%, wk - f*(x), £*(y) < f*(z), f*(w)
and

X%, y* = g%, wk - f£*(x), £%(y) = £%(z), £*W) .

At least one of X,y,z,w is a member of B - A . Since u,v = v,u ,

X
3
)
%
3
3
K
h
]
%]
3]
b

all u,veR" , we may assume that (x,y,z,w) is of one of the following é
forms: ;
(i) a,, aj, bk’ bL ;
- (ii) a,s aj, a s b& j
(iii) as bj’ s ay ;
(iv) a s bj’ a bL g
(v) a; bj’ bys by i
(vi) bi’ bj’ a s 3y g
(vii) bi’ bj’ a5 b&
(viii) b, bJ., bs by :

Because a. %, aj* <L,1<i, j<2m, L<a% bj* <2L,

1<i<2m 1<j<n, and bi*,bj*=2L,1_<_i,j5n,a110fthe




e ——

above cases other than (iv) may be dealt with quickly and easily. As to

(iv), we need only note that, because of our choice of € , everything

works out nicely.

2

* * * * i

iff a; < ak

.
SRR AL T o€ et pe Y

iff f(ai) < f(ak)

NN, 0 Kl st 8
bt
~)

. 2  — 2 ——
iff (Yf(ai)) +q.q, < (Yf(ak)) + q’q£
9 : J ’
0
: ¢ i * * " *
! [ ] iff f (ai), f (bj) < f (ak), f (QL) .
N | qed.
[ Claim 2:
n! T a

- For all ie {1,2, ..., 2m} , M "eK .
; - Proof:
g Choose € > 0 as in Lemma 7, and apply Lemma 2 to obtain a
F\ : homomorphism £ from A - {ai} s DTA - {ai}) onto a substructure of
* . .
2 ) (R, Al) st f(aj) € [aj, aj+e) . Let f%* be thalned from f as in

‘ i Lemma 7. Then f* is a homomorphism from M ' onto a substructure of

|
[ (R?, An> . Pick any x,y,z,w € B4 - {ai} .

FE L If (x,y,z,w) € B4 - A4 , then

; { (x,y,2z,w) €E iff xk, y¥ <zk, wk iff f£%(x), £*¥(y) < *{z), £*W)
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If (x,V,2,w) e:A4 , then

(x,y,z,w) ¢E iff (x,y,z,w) €D iff |f(x) - f(y)| < |f(z) - f(w)| ﬂ‘:

] 4

: iff f*(x), £*(y) < fx(z), f*(w) . m:

1

3 Claim 3: = 4

) Let {cl, oo c{'} and {dl, ce e dL} be two sets of distinct elements

' from B - A . Then

3 Cis eeus C d., ..., d |}

3 m 1 Yek  iff mt ek . :

4 n n ——l

Proof: 'J!.‘

We may assume that there exists & , 0 <f <4 so that 7

¢ L)

B ey =dps s cp=dy and fegy, N ld,, o gl =0 i

? - Because of symmetry we need only show that, if f is a homomorphism |

“3 C].’ o029 CL 0 K
from onto a substructure of (R, An) , then

; d e 0 0 d{' n

I m 1 eKn . Define the function g:B - {’dl, oo dL} into R
§~ 1 by :]

£f(x) , if xel(f) ]
gx) = {: i

4 f(dj)’ if x=cj,h+1_<_j_§&. !
; dl’ ° 0 09 d&

We shall show that g is a homomorphism from M onto a sub- i
< ) n \ .
4 structure of (R ’ An/ . Pick any x,y,z,w €B - {dl, e dl)} . A
i First, suppose {x,y,z,w} N {c; ...r ¢} =R . ‘=
j - 46 - i
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Then

<X=Y=Z,W> €E iff f(X), f(Y).S f(z), f(W)

iff  g(x), g(y) < g(z), g

Now, suppose {X,y,z,w} N {cl, cees CL} +Q .

Then (x,y,z,w) eB4 - Aé and, hence,

(x,y,z,w) ¢E iff x*, y* < z¥, w¥

For ueB - {dl, cees d&} define u' by

X

{:11 , if u¢ {cl, ceus cL}

d., 1if x=cj,&+1_<_j_<_L

Then g(u) = £Q') . .

Because ci*, cj* = di*’ dj* and, for teB - {dl, ooy d&, Cys sees CL}’

t*, ci* = t¥%, dj* , we know that

x*, y*¥ < zk, wkx iff x'%, y'* < z'%, y'#*

Hence,
<X9Y9Z9W> eE — <X'9 Y'9 Z'9 W'> eE
- (f(X')9 f(Y'), £(z'), f(W')> eAn
~ (g(x), 8(y), &(z), gW)) ed_ .
dl’ cees dL
Therefore, g is a homomorphism and eKn . qed.

At this point we are ready to show the existence of the submodel

mo of M . We distinguish three cases as follows:
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1
(1) M~ e Kn
b,...,b b’ o-.,b
(2) (@) (2 <4 <n) m -1 ¢Kn Amt t ek
bl’ cee bn
3) m ¢ K
In Case (1), we let ﬁO =M,
b., ...5 b
In Case (2}, take mb =M 1 1-1 ; and, in
b.y ve.s b
n

Case (3), take mo =nt

Then 2m < |Wy| < 2m +n ; and, from Claims 1, 2, 3, it follows that
mo ¢ Kn; further, if heS(mO) , |h| = lmol - 1, then thh . This

completes the proof of Theorem 7.

The next situation we shall deal with is where measurement-

theoretic classes K  are constructed in terms of a dissimilarity "~ ~~
. . . n . .
relation generated by another metric in R which has received atten-

tion in the literature of mathematical psychology.

2. The "Dominance" Metric

For convenience let us now change some of the referents of
some of the symbols used in the previous section of this chapter.

o - - n
Given x = (xl, cees xn), y (yl, s yn> e R , let

X,y = max |xi - yi| . We shall present a proof of

Theorem 8

Let An be the four-place relation on R" given by xyAnzw




ey e e —— i e - o e meean b o o s N A Y o

iff x,yn.f z,wn Let Kn be the class of all finite structures be-
longing to H-]'S ((Rn, An>) . Then Kn is not axiomatizable by a
universal sentence,

We begin with some combinatorial results,

Lemma 8-

Let n>2, LeR, L >0 . Let £ be a maximal collection of

points qielnstLZHj(qi)ZO,lfjfn,and q; > qj=L,i9‘j .

Then lSl = 2" and

{ags +eo qzn} = {{xys oves %) eRn/xi e {0,1}, 1 <i<n}

The reader is invited to verify Lemma 8 for the case n =2 . We shall

show by induction that the lemma holds fo¥ all f>"2~"Suppose tiate

the lemria holds for 2 <n <% and that £ is a maximal collection of

points in Rm'l .

Let

>
i

o = L o) eflxy <L, 1 <1<k +1]

= U xy5 ooy g0 €8xy = L}

A
A, = {(xl, Xys oo xk+1) e:-‘l/x1 <L, x, = L}
A

3 = Uxps %5 ooy 20 €8/%) <L, xp < Ls x4 = 1}

{(xl, cons xk+].> es/xl, cees X <L, X L}

- {<x1, R ) xk+1> e£/x1’ R ) xk < L, xk+1 = Lj

g
£
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Then & = A, U A Uu...uU Apyy - BY the induction hypothesis, we know

#-1 #-2

|4, <t |a,l <2777 lagi <277, ..., [Apl <2 . Also, la | <1

and IA&+1|‘5 1 . Therefore, |&] < i Also, since &£ is maximal

and there is a way to choose elements for each Ai so that |Ai| =

k+l

1<ic< #+1 and |A =1 , we know that |£‘ =2 and the above in-

ol

equalities are actually equalities. Let
n . .
Sj = {(xl, cees xj) eR /xie o, L}, 1<i<jl}.
By the induction hypothesis, we know that

(xl, cees xk+1) € Ai - Xl’ cees Xi-l <1L, xi =L,
and

(xi+1, cens xk+1> e £%+1-i for 1<i<k+1.

Using the above fact and the fact that if i # j, PeA,; quj, then

p,q = L , we may show that, for (xl, cees Xk+1> eAi , where 1 >2 ,

X =X = ... =X, % 0 . Then we may verify that
T T A N R
Therefore,
+
g = {<x1, cees X o) eR® 1/:v;ie: {o, L}, 1<i<kal}l,
ged.
Corollary

Let Qys eees q, be any collection of points in

RF st 9> qj =L ,1i#j, and m is maximal, Then m = 2n and there
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is a translation T:Rn - Rn such that
{r@@)/1 <i<m} = {x;5 ouus x) eRn/xje {0, 1}, 1<j<n}.

. . n
Now we are ready to characterize all collections of 2~ -1

distinct,. pairwise equidistant (by the "dominance" metric) points in

n A1

R . Given ie {1, cees n} , let map Rn into Rn-l so that if

Al
X = <X1’ R ) Xn> ? then X = <x1’ Y xi-l’ Xi+1, R Xn> .

Lemma 9
Let n> 2, LeR, L >0 . Let £ be a collection of 2" -1

points ql, cees g eRn st 0 <I.(q.) <L, 1<j<n, 1<i<2n-1. ’
o1 el i A - - - -

and qs qj =L, 1 # j . Then there are numbers iO’ jo, 1<i,<n,
1.< 3y < 20.1 such that
i

~ 0

i
(1) {ﬁlo, cers q?-n 1} c {(xl, coes x o Mxe{0,L}, 1<i < n-1}

(ii) For 1<i<2-1, if i#j;, then I (q,) € {0,L}

and 0
.o n -1 ¢ . .
(iii) If peR and Hi(p) Hi‘qjo) , 1 # iy » then
pef iff p=q. .
Jo
Proof:

One can verify that Lemma 9 holds for n =2 , Now suppose

that it holds for all n st 2 <n<® , and let & be a collection of

2&+1-1 points in R&H satisfying the hypotheses of the lemma. Define

sets A 0<i<#+l in terms of & exactly as was done in the proof

i 9
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of Lemma 8, Then, since ISI = me1 - 1, there exists h , 0 <h < A+l ,

st (a) If 0<i#h, then |4 =211
(b) If 0#h, then [|4)] =1
(c) If h=0, then [A] =0
(@ I h#0, then |A] = M-

If h =0, it follows from Lemma 8 that

- \ : -
L = {<x1’ ce o x‘?‘H’]./ ekn/xie {OQL}’ 1 S 1 5 '?H']-} {<0’ 0’ Y 0>}

Then we may take i = £+1 and ig s° that qjo € A&+1 . qed.

Thus we may assume that h>1 ., If h = &+l , then we may take
i. =f+ and j. so that q. € A, . So we now may assume that
0 0 Jg 0
1<h<#% . It follows from Lemma 8 and the rfact that p,q =L , for
distinct p, qef , that, for all i, j, if i #h, 0<i<j, and

reAj , then Hi(r) =0 . Also, for reA, and i #h , Hi(r) =0,

0
o _ k+1-h

Let ;h = {(xh+1, cees xk+1) 34 /(Hxl, cees xheR)

((xl, vees Kpy oo xk+1> eAh)} . By our induction hypothesis, we

know what Sh- looks like, Let (yl, ceosd yk*l-h> be the point of

Rk+1-h corresponding to the qj obtained when Lemma 9 is applied

0
to £h . Let 16 be the index 1 < 16 < #+1-h corresponding to i,
in the lemma, 1If Yo * {0,L} , then it is easy to verify that one

0
can satisfy the conclusion of Lemma 9 (for Rk+1) by choosing

. - . o
i, = h + i, and ig s© that qjO € Ah and

(Hh+1(qj )s vees nk+1(qj )) = <Y1’ sees Yk+1-h> . We now need only

0 0
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deal with the case where Yy € {0,L} . Therefore, by the induction
0
hypothesis, we know that there is some element

k+1-h
<p1’ e ¢ Pk+1_h> € {OQL} SUCh that

£ = {O’L}‘h'i'l-h _ {(P

h 1’ e 0 0 pk+1_h>} .

#+1-h
Case 1: (pl, cees Pk+1-h> * {0}
Let O be the least positive integer such that Pg = L . Then
one can show that, for ie {0, 1, ..., k+l} - {h, h+9} if qui ,
then Hh(q) =0 , Also, for all quh+6 for which it is not the case

that I, ,,(@), ...> H&+1(q)) = <P1’ cees pk+1-h> one can show that

h+1
Hh(q) =0 . Therefore, we may satisfy tha conclusion of Lemma 9 by

choosing iy = h and jg s° that qjo is the member of Ah+e for

WhiCh <nh+1(qj )’ s 0y n&_*_l(qjo)) = <P1’ LRI ] Pk+1'h> .

0
qed.

k+1-h
Case 2: (pl, cees pk*i-h> e{o}
In this case one should choose io =h and j0 so that
qj € AO . Then cne can verify the conclusion of Lemma 9.
0
Our next goal is to prove a collinearity result like Lemma 3

only for the "dominance" metric.

Lenma 10

Let LeR , L>0,n>2,

Let Qs «eo qQ, ¢ R st'qi, qj =L, i#j. Let x,y,z cr"

2"-1
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st X,q; = x,ql, Ysq; = ML 2,q; = z,ql, 1<i<2-1, and X5, <L,

¥>9q <L, Z5qy <L . Then x, y, and 2z are collinear,

Proof: Let & {ql, eeer 4 .

2°-1

Let X

{xeRn/ X,q; = X,q; and ;:711' <1} . We need to show
that if x,y,z €¢¥ , then x,y, and 2z are collinear. Because transla-
tions preserve lines, we may assume that 0 < Hj (qi) <L, for

1<ic< 2"-1 and 1 < j<n, Hence, Lemma 9 is applicable, Moreover,
we may assume that i, =n . Let e = I'Iio(an) . Note that, for all

<n., Let

e

<X1’ ...,xn> e, 0<x, <L,1%

X' = {xe¥/ X,q, = L/2} , ¥ =¥ - X' .

Claim 1: ¥' = {n/2}"
By Lemma 9, we know that, for all 1, 1 <i<n, there exist
is 3' ,1<j, 3 < 2.1 st Hi(qj) =0 and Hi(qj') =1 . Because of

L

this, one can show that, for all (xl, cess xn) e X', X, =%

2
1]<i<mn. Itis also straightforward to verify that L2t c %' .

qed.

Now, for 1 < i <n-1, let c; map ¥' into {O,L} as

follows, given x = <X1’ coes xn>' e X" .

0, if X, # X5qy
c () =

L , otherwise

- 54 -

}

TN,
Iy arpyaraoy |

J

—

* v im—




Claim 2: For all x,y € X' and ie {1, ..., n-1}, ci(x) = ci(y) .

We shall show that, for all xeX" , (cl (X)s oens cn_l(x), e) ef.
Suppose the contrary. Then there exists
xef' st p(x) = (cl(x), e cn_l(x), 0) e£ aund
q(x) = <Cl(x), ce e cn_l(x), L) e£ .

X, , if xiaéx,q1

Therefore, X5q; = x,p (x) > |xi - ci(x)l ={
L - x., otherwise ,
i,

for all 1 <i <n-1,
From this one can show that |xi - c_.(x)l < X5q; >

for 1515n-l .

Therefore, since x,p(X) = x,q(x) = X5qys X = X,q and

L - x = X,q - Hence, X,q =_12: , which is a contradiction, because

xel" . Now pick any x,y e¢X"' . By the above we know that

ey )y wevs cp 1), @) =gy =Key ()5 vuvs 0 43D, e) , so

0
ci(x) = ci(y) , 1<i<n-l, qed.

Claim 3: If X' #8 , then ee {O,L} .

Suppose there is an element xeX' . Let

p(x) = <c1(X), coss cn_l(X), e) e£ . As above, X, - ci(x)l < %,9; »

for 1 < i < n-l ., Therefore, |xn-e| = x,ql , from which it follows
that ec {O,L} . qed.
Note that if ¥" = 8§ , then our lemma follows immediately from

Claim 1; thus we may assume that X" #8 . By virtue of Claim 2, we
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may write ‘ci' to indicate the single member of {ci(x)/xe}ﬂ"} .

Because of Claim 3 and Lemma 9, we may distinguish the following two
cases:
(1) <C1’ cees C 0) &

<C1, cee) Cn_l’ L) #S

(II) <C1’ cee) Cn_l, 0> #S
<C1’ e e ) Cn-l, L> €-£
(1): Define c, = L.
2¢c. -L 2¢ -L

1 n
L 9 e e e L

We shall show that X' C ¥ . Pick any x = (x
L - C4"<<§

For i <n, consic'r (cl, cees Ces ouns c .1’ L) e£ . Since

Let ¥ = {(L-cl, cees L-cn> + A ¢ /0 <A <L} .

17 e xn> eX" .

Define Ei

1

(cl, cews C 1o 0) e£ , x = X,q; #L/2 . Hence, L - xn| # X,qy 3

n
and, therefore, Ixi - Eil = X,qq .

A , if ¢

]
(ol

Let A = X,q; . Then X, =

L-A, if cs 0,1<i<n-1 and

x = A . Therefore,
.'ch-L 2cn-L
x=(L-c1, ...,L-cn)+>\( I e T ) cH ,
So¥"c ¥, qed.
Note that X' C H , because we may choose A =l'2- .

Therefore ¥ C H ,

In Case (II) one can similarly verify that all members of ¥

v e a1 el i T WAMEN & B b wsrped Sev aat | &

S T




are collinear. Therefore, Lemma 10 holds,

The following trivial lemma will be useful for reference,

Lemma 11
Let Lek , L>0 . let {q, ..., a } = {0, 2L} - {o}" .
"1
Then

(i) 05ni(qj)_<_2L,1515n,15j<2-1.
(ii) 1> 95 = 2L, i#]

(1ii)  For all xeR st 0 <x <L, if peR  is given by

M) =x, 1< i<, then, for all 154, §< 2", 4y oP = 4;5P
and L <q.,p<2L.

Let Lemma 12 be the lemma whose statement consists of exactly
the same symbols used in the statement of Lemma 6. Theorem 8 is an
immediate cc sequence of Lemma 12, which we shall now prove,

Pick any n, m as in the statement of Lemma 12, Let

A= {al, coes aZm} and D be as in Lemma 2. Choose bl’ cees b N

2 -1

st a, <bj<...<b . Let B=aU {bl, ceesb 3. Let L be
2 -1 2 -1

be a real number larger than ay ¢ Let qys FEes 2n;1 be as in

Lemma 11, For each xeB , define x*eRn by

v ((ai, cees ai) , 1if x a,

kqj , if x = by

Let E =DU {(x,y,z,w) eB4 - AA/ x¥*, y* < z¥%, w*} ., Let Ih= (B, E) .

At this point it should surprise nobody that the obvious analogues of
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Lemma 7 and Claims 1, 2, 3 in the proof of Lemma 6 may ail be established,

Thercefore, Theorem 8 holds.

Let us finish this chapter by noting that not every metric in

R" leads to classes Kn which fail to be universally axiomatizzble,

For example, let p be the metric in R

1,
p(x, Y) =

Let I(.n be the class of all finite members
xyAnzw iff p(x,y) < plz,w) , for x,y,z,w

that I(.n is universally axiomatized by the

given by
if x4y
if x=y,

of H-IS(Rn, An) , where
eR” . One can easily see

following axioms in a

language contaiaing the four-place relation symbol D :
(i) abDaa is an equivalence relation,
(ii) abDcd ~= [abDaa V 1 (cdbDcc)] .

s

Fi T

D s Ay

g, B

.« SRR - - --:.>. SREEEREE 7

g R

& R . ;

AL

o e oeeacy . SR - ;e - SRR -



L APPENDIX

The theorems presented in the main body of this thesis have

shown that it is impossible to achieve various representation results
with a finite number of necessary universal axioms. The theorem to
follow establishes the impossibiiity of obtaining a combined representa-
tion-uniqueness result by using a specific necessary non-universal axiom,

T , along with a finite number of necessary universal axioms,

Theorem
T, At ——

et A be the relation x -y <z -w on the real numbers,
Let K be the class of all finite m= <A, D), DC A4 , such that M
is embeddable in (R, AY by a homomorphism which is unique up to a
linear transformation.

(1) K is not universally axiomatizable, because S(K) $ K.

(2) Let = be the binary relation (abDaa A aaDab) on A,

Let T be the following sentence:

(da,b,ceA) (a # bAa E'E c ANb * c) - (da,b,c,deh)

(@%b Aa#cAabDed A cdDab) .

Then, for all TeK , T tr m.

.
>
ke 3
~
' !
23
3 .
s o
i
3 o
bt ‘
3 >
v
3
2]
7
%
s
x 8
) ¥
.
i %
5
1) N
-
. 1
.
‘ s
3 a
-
[ b
&
R '
0
. 34
v
-
¢ o
E
‘ g s
4
&I
3
.
b K
g v,
N 3
a5
: h
i
i .
¥
Y 1
. - .
v
v
v : y
I
J

(3) There is no universal sentence © such that, for all

finite M,
MmeK  iff (c AT) tr I,

- 59 -

. g;_.,q.;;qwr PP A R b S




Part (1) follows from (2), which may be established by showing
that if T fails to hold in a structure MeK , then one can violate
the uniqueness condition for membership in K by defining homomorphisms
similar .to. those involved in Lemma 2. Part (3) may be proved by using
Theorems 15, 16 on p. 39 of Suppes-Zinnes [13], These theorems enable
one to show that if M is a 2m-element model as constructed in the
proof of Theorem 3, then, for every acB(n) , there exists an extension

N of M st hek .
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